Learning with Tree-Averaged Densities and Distributions
نویسنده
چکیده
We utilize the ensemble of trees framework, a tractable mixture over superexponential number of tree-structured distributions [1], to develop a new model for multivariate density estimation. The model is based on a construction of treestructured copulas – multivariate distributions with uniform on [0, 1] marginals. By averaging over all possible tree structures, the new model can approximate distributions with complex variable dependencies. We propose an EM algorithm to estimate the parameters for these tree-averaged models for both the real-valued and the categorical case. Based on the tree-averaged framework, we propose a new model for joint precipitation amounts data on networks of rain stations.
منابع مشابه
Multiscale Dictionary Learning for Estimating Conditional Distributions
Nonparametric estimation of the conditional distribution of a response given highdimensional features is a challenging problem. It is important to allow not only the mean but also the variance and shape of the response density to change flexibly with features, which are massive-dimensional. We propose a multiscale dictionary learning model, which expresses the conditional response density as a ...
متن کاملFitting Tree Height Distributions in Natural Beech Forest Stands of Guilan (Case Study: Masal)
In this research, modeling tree height distributions of beech in natural forests of Masal that is located in Guilan province; was investigated. Inventory was carried out using systematic random sampling with network dimensions of 150×200 m and area sample plot of 0.1 ha. DBH and heights of 630 beech trees in 30 sample plots were measured. Beta, Gamma, Normal, Log-normal and Weibull prob...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملLatent Tree Copulas
We propose a new approach for estimation of joint densities for continuous observations using latent tree models for copulas, joint distributions with uniform U (0, 1) marginals. Latent tree copulas combine the advantages of the parametrization of the joint density using only bivariate distributions with the ability to approximate complex dependencies with the help of latent variables. The prop...
متن کاملWaves and distributions connected to systems of interacting populations
We discuss two cases that can be connected to the dynamics of interacting populations: (I.) density waves for the case or negligible random fluctuations of the populations densities, and (II.) probability distributions connected to the model equations for of spatially averaged populations densities for the case of significant random fluctuations of the independent quantity that can be associate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007